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CONFORMAL CHANGES OF RIEMANNIAN METRICS

KENTARO YANO & MORIO OBATA

0. Introduction

Let M be an n-dimensional differentiable connected Riemannian manifold
with metric tensor g. Since we consider several Riemannian metrics on the same
mapifold M, we denote by (M, g) the Riemannian manifold M with metric tensor
g. The Riemannian metric g defines, in the tangent space at each point of the
manifold, the inner product g(X, Y) of two vectors X and Y at the point and
the angle # between two vectors by cos § = g(X, Y)/[v/g(X, X)-+/g(Y, Y)I. Let
there be given two metrics g and g* on M. If the angles between two vectors
with respect to g and g* are always equal to each other at each point of the
manifold, we say that g and g* are conformally related or that g and g* are
conformal to each other. A necessary and sufficient condition that g and g* of
M be conformal to each other is that there exist a function o on M such that
g* = e*g. We call such a change of metric g — g* a conformal change of
Riemannian metric. Yamabe [21] proved

Theorem A. For any Riemannian metric given on g compact C* differentia-
ble manifold of dimension n > 3, there always exists a Riemannian metric
which is conformal to the given metric and whose slalar curvature is constant.

So in the study of conformal properties of a compact M we can assume the
scalar curvature of M to be constant.

In the above discussion, what has been changed is the Riemannian metric
g at each point of the manifold M. We are now going to consider point trans-
formations which induce a conformal change of metric of the manifold.

Let (M, g) and (M, g’) be two Riemannian manifolds, and f: M— M’ a diffeo-
morphism. Then g* = f~'¢’ is a Riemannian metric on M. When g* and g are
conformally related, that is, when there exists a function p on M such that g*
= e*g, wecall f: (M, g) — (M, g) a conformal transformation. In particular,
if p = constant, then f is called a homothetic transformation or a homothety
if p = 0, then f is called an isometric transformation or an isometry.

The group of all conformal (homothetic or isometric) transformations of
(M, g) on itself is called a conformal transformation (a homothetic transfor-
mation or an isometry) group and is denoted by C(M) (H(M) or I(M)). We
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denote the connected components of the identity of C(M), H(M) and I(M) by
C(M), H(M) and I (M) respectively.

If a vector field ¥ defines an infinitesimal conformal transformation, then v
satisfies ¥, = 2pg, where &, denotes the Lie derivative with respect to »,
and p is a function on M. v defines an infinitesimal homothetic transformation
or an infinitesimal isometry according as p is a constant or zero.

Riemannian manifolds with constant scalar curvature admitting an infini-
tesimal non-isometric conformal transformation have been studied by Bishop
[2], Goldberg [21, [3], [4], [5], [6], Hsiung 8], [9], [10], Kobayashi [4], [5], [6],
Lichnerowicz [14], Nagano [15], [16], [26], Obata [171, [18], [19], [27], Sawaki
[28] and Yano [22],[23], [24], [25], [26], [27], [28]. A typical result may be
quoted as follows.

Theorem B (Goldberg (3], Obata [18],[19], Yano [23]). Suppose that a
compact Riemannian manifold M of dimension n > 2 with constant scalar
curvature K admits an infinitesimal non-isometric conformal transformation v
so that .8 = 2pg, p + const. Then a necessary and sufficient condition for
M to be isometric to a sphere is

ijipjpidV =0,
M

where G;; = K;; — (1/nKg;;, p* = p.g™*, p; = Vip, K;; is the Ricci tensor,
and dV is the volume element of M.

It is now a well-known conjecture that a compact Riemannian manifold with
constant scalar curvature admitting a one-parameter group of non-isometric
conformal transformations is isometric to a sphere.

Riemannian manifolds with constant scarlar curvature admitting a non-
homothetic conformal transformation have been studied by Barbance [1],
Goldberg {7], Hsiung [11], Kurita [13], Liu [11], Obata [17] and Yano [7].
A typical result may be quoted as follows.

Theorem C (Goldberg & Yano [7]). Let (M, g) be a compact Riemannian
manifold with constant scalar curvature K and admitting a non-homothetic
conformal change g* = e**g such that K* — K. If

fu"‘“GﬁujuidV >0,

M

where u = e, u; = Vu, u* = u,g*, then (M, g) is isometric to a sphere.
The purpose of the present paper is to establish some theorems on infini-
- tesimal conformal transformations and conformal changes of metric, and to
generalize the results obtained in Goldberg and Yano [7].
In the sequal, we need the following two theorems.
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Theorem D (Obata [18]). If a complete Riemannian manifold M of dimen-
sion n> 2 admits a non-constant function p such that V ;§/ ;o == — c’og;;, where
¢ is a positive constant, then M is isometric to a sphere of radius 1/c in (n + 1)-
dimensional Euclidean space.

Theorem E (Ishihara & Tashiro [12], Tashiro [20]). If a complete Rieman-
nian manifold M of dimension n > 2 admits a non-constant function p such
that V V.0 = (1/n)dpg;;, where Ao = gV ¥/ .p, then M is conformal to a
sphere in (n + 1)-dimensional Euclidean space.

Throughout the present paper, we assume that the Riemannian manifold M
under consideration is compact and orientable. If M is not orientable, we need
only to take an orientable double covering of M.

1. General formulas for infinitesimal conformal transformations

By g,:, {,*:}, Vi, Ki5i"> K;; and K, we denote, respectively, the metric tensor,
the Christoffel symbols formed with g;;, the operator of covariant differenti-
ation with respect to {;*;}, the curvature tensor, the Ricci tensor and the scalar
curvature of M.

We put
1
1.1 Gji = Kji - ngji ’
(1.2) ijih = Kkjih - - '“1- : "‘K(aﬁgji - 5?gkz) »
nn—1)

(1.3) ijz'h = aijih + b(‘s;ész — 5?Gki + Gkngji - Gjhgki.) s

where a, b are constant and G,* = G, g‘. The tensor G, (respectively Z,,,*)
measures the deviation of the manifold M from being an Einstein space (respec-
tively a space of constant curvature), and both tensors satisfy

(1.4) Gug"'=0, Z,;'=G,, W,i={a+ (n—2)bG,.
If a + (n — 2)b = 0, then
(1.5 ijih = aijih ,

where C,;," is Weyl’s conformal curvature tensor. Using Bianchi’s identity,
we can check

(1.6) piG,="2-2%rKk,
2n

where V! = g/ ,.
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1.1. Formulas for an infinitesimal conformal transformation
When v" defines an infinitesimal conformal transformation, we have
1.7) Ly =Vvi + Vo, = 2Pgﬁ ’

where p = (1/m)f w*.
Equation (1.7) and a general formula (see Yano [22]) for Lie derivatives,

LA} = 38" ((Lo8i) + VAL 81 — VUL u81)}
give
(1.8) Lol = 8500 + 8101 — 850" -
Equation (1.8) and a general formula (see Yano [22]),
LKy = V(LMD — VALD 5
give
(1.9) LKyt = 8V ipi + 0V pi — Vi85 + Vip 84 »

from which follow

(1.10) S K= —(n— 2,0, — dpgy: s
a.i1n LK = —2n— 1)dp — 2pK,
where

(1.12) do =8 ¥.0.

From (1.9}, (1.10) and (1.11) we have
(1.13) LGy = —(n — 2)(Vjpi _ %Apgﬁ ,

gﬂzkﬁh = —5/’;‘7,*‘0;' + 5?Vx,0i — Vo8 + V,0"8s:

1.1
(1.14) + %Ap(aﬁgjé — 0%8xi) »

LWy = {a + (n — 2)bH{— 4V ;0, + %V 0,

1.1 2
(1.13) —V0"85 + Vip"8r: + ;Ap(aiégﬁ — 058} -

From (1.13),(1.14), (1.15) and &,g** = —2pg**, we have
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(1.16) LG G = —2n — DG ot — 4G, G

(1.17) L Zyjunl ) = —8G o’ — 40Zi;inl* ",
LW WH™)

(1.18) o

={a + (n =2)bY(—8G;;Fip" — 4oW ., ,WEI) |
jv o OV &y

1.2. Integral formulas for an infinitesimal conformal transformation

We now assume that the manifold M is compact and orientable, and let
there be given a vector field v* in M. By a straight forward computation of

VJ'HVij + Vv, — E(Vtv‘)g,-i}vf]
n
and integration over M, we obtain

f{gﬁVjViv" + Kot 1 P :Azf-V"(Vi'vi)}v,de
n

M

(1.19) L f [Vjvi 4Pl 2 (Vtvn)gﬁ}
2J p
20
) {Vﬂ)i + Vv, — —-(F’S?J-‘)gﬁ}dV =0,
n 4‘ B “ i

where 4V is the volume element of M.
If * is a gradient vector field »* = F*p, then (1.19) becomes

f{gﬁVJVz:ph + Kot + " T 20 "‘(Ap)}jpndV
H
(1.20) % ) . .
| w2 e — ~ o} 7.0 — ~dp)gyfav = 0.
M
Since we have
(1.20)’ g Wt = Kihpt + Pr(dp)
(1.20) can be reduced to
I (Kjipjpi + ~~Q—g~~vlfpi7idp)dV
(a.2n x 1 1
+ [pror = o] 7.0 — Leapg,fav =0,
M

or
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Koo = 2 corfav
(1.22) 4 1 L
+ [{ror = Latoer} {rio~ Lipg,dav =o.
M

If a non-constant function p satisfies 4p = kp with a constant k, k being
necessarily negative, (1.22) becomes

Kjipjpi _ = !_kzpz) dVv
n

(1.23) o 1 1
+ f(pri — ~—kpg”) (Vjpi — —-kpgji)dV =0,
2w n n
or
Kit+ """ 1 .kgji) P p'dV
(1.24) o

T f (Vjp"’ — lkpgﬁ) (Vjpi — —l—kpgﬁ) av =0,
o n n
by virtue of
f KV + f ke, o'o'dV =0,
M M

derived from
$do* = pdp + 80’0 = ko® + 8,070’

Integral formulas (1.19), (1.20), (1.21) and (1.22) are valid for an arbitrary
vector field v* and an arbitrary function p, while integral formuias (1.23) and
(1.24) for a function p satisfying dp = kp.

If a Riemannian manifold with K = const. admits an infinitesimal conformal
transformation 2%, then from (1.11) we have

(1.25) do= — L Ko,
n—1
and consequently (1.24) becomes
f Gip'p'dV
(1.26) o : .
7 R ¢ n) (V. i Kpg,;)dV = 0.
+f(p+ e R L (n~)pgj)
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On the other hand, since /G ;, = 0, we have
PHGipp") = Gup’p* + pGl ot -
By substituting (1.16) for G, //p! in the above equation and integrating over
M we obtain

.27 [Gpipav = _2?’_;1___2_). f [4°G G + pL |GGV .
M M

Similarly, substitution of (1.17) and (1.18) for G, F/p! gives, respectively,

(1.28) f G ioloidV = % f 40 Z iy 25 + 0L (Zy i ZH M)AV
M M .

fGﬁpjpidV
(1.29) * . )
=g [l 4 e W Wfay
M

fora + (n — 2) = 0.

2. Theorems on infinitesimal conformal transformations

We denote by (C) the following condition:
(C): The Riemannian manifold M is compact with constant scalar curvature K
and admits an infinitesimal non-isometric conformal transformation »* so that
2.8 = 208y, p # constant,

Then, first of all, from (1.26) we have

Theorem 2.1 (Obata[19)). Suppose that M of dimension n > 2 satisfies (C).
Then

@.1) f G p?p'dV <0,
M
equality holding if and only if

1
Vips + ————Kpg;; =0,

n(n—1)

that is, if and only if M is isometric to a sphere.
Theorem 2.2 (Yano [23]). Suppose that M of dimension n > 2 satisfies (C).
If

2.2) IQMMVzm
M
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then M is isometric to a sphere.

Theorem 2.3 (Goldberg [3], Obata [19], Yano [24]). Suppose that M of
dimension n > 2 satisfies (C). Then in order that M be isometric to a sphere,
it is necessary and sufficient that

2.3) f GuppidV = 0.
M

Suppose that M of dimension n > 2 satisfies (C) and one of the following
conditions:

(2.4) 2 (GG =0,
(2.5) 40G ;G + £ (G;;GT) =0,

(2.6) PLAG, G = koG G (k> —4),
Q2.7 L LG, G = k"G, G (k >0, 1: integer)

then we see from (1.27) that (2.2) is satisfied and consequently that M is iso-
metric to a sphere. Conversely, if M is isometric to a sphere, then G, vanishes
identically and all the conditions above are satisfied.

Suppose that M of dimension n > 2 satisfies (C) and one of the following
conditions :

(2.8 gv(zkjihzkjih) =0,
(2.9) 4‘0ij1:th'”}1 + yv(zkjihzkjih) =0,
(2.10) LoAZinZE ") = kpZyyinZFr (k> —4),

QA1) LUZy i Z) = kv Z,,nZ5 (k> 0, £ integer)

then we see from (1.28) that (2.2) is satisfied and consequently that M is iso-
metric to a sphere. Conversely, if M is isometric to a sphere, then Z, ;;, vanishes
identically and all the conditions above are satisfied.

Similarly, suppose that M of dimension n > 2 satisfies (C) and one of the
following conditions:

(212) g}v(ijkajih) =0 s

1 .
e e "'""'"““’gv w " .ijzh) =0 ,
{a + (n — 2)b} Wesin
2.14) LW, W) = {a + (n — DbYkpW W™ (k> ~4),

LW W) = {a + (n — 2)bYkp™ "W, ;W
(k > 0, t: integer) ,

(213) 4kajih. Wi 4

(2.15)
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a + (n — 2)b being different from zero. Then we see from (1.29) that (2.2) is
satisfied and consequently that M is isometric to a sphere. Conversely, if M is
isometric to a sphere, then W, vanishes identically and all the conditions
above are satisfied. Thus we have

Theorem 2.4. Suppose that M of dimension n >> 2 satisfies (C). In order
that M be isometric to a sphere, it is necessary and sufficient that one of the
conditions (2.4)-(2.15) be satisfied.

3. General formulas for conformal changes of metric

In this section, we consider a conformal change of metric
3.1 8 = €8y .

When (2 is a quantity formed with g, we denote by 2* the similar quantity
formed with g*.

3.1. Formulas for conformal changes of metric

We have

3.2) K}fﬁh = chjih - 51’:‘011' + 5?‘0“ - thgﬁ + pjhglci s
3.3 K_;!(i = Kji —(n— 2)pji — 0a°83i >
(3.4) e*K* = K — 2(n — 1)p,*,
where
p:=Vip,  p*=pg™,
1 )
(3.5) o1 =V10: — psoi + E-Pap"gji ’ o = ol s
s = do+ P 2000, dp=gW
g = 4dp + T Pa0" s o= 8 ,p;-

From (3.2), (3.3), (3.4) and the definitions of G,;, Z,;;*, W, ;* we find
(.6 Gh=Gu—(n =W — pipd) + " 2o — pupsse,

Zz(jih = ijih - 5?(‘71"0;- - pjpi) + 5?(‘71;‘01' - PkPi)
(3.7 — V" — 0up™8s + V30" — 0;0"8xi

2
+ Z(AP — pap")0185 — 0%8kd) »
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it =Wt + {a + (n — 2)b}

: {—5{:(17,-pi — 0100 + 8T wpi — 04p)

3.8
G8 — Feo" — pup™)8s: + WV 10" — 0,0")8s
2
+ F(AP — pap“)(t?ﬁgﬁ — 378k
If we put
(3.9) . u=-cevr, u,=Vu,

then we have
(3.10) Vius = —ulW,0. — p;00 ,
3.11) du = —u(dp — pap*) ,

and consequently, from (3.4), (3.6), (3.7) and (3.8),

(3.12) K* = 'K + 2(n — Dudu — n(n — Duut,

(3.13) Gﬁ = Gji + (n— 2)sz' ,

(3.14) ZEr = Zy " + O,

(315) W;ckjih - W}.—jih + {a + (n - 2)b}ijl'h ’

where

(3.16) P, = u“l(Vjui - iAug,-i) , Pt =Pgh,
n

3.17 Q)" = 0}P;; — 0Py + P."8,; — P;"gy; .

From (3.16) and (3.17) we obtain
(3.18) PP = u‘zl(VJ'ui)(Vjui) - _l-(Au)z} ,
n

(3.12) O, ;inQ*" = 4(n — 2)P,;P%,
respectively. We also have, from (3.13), (3.14) and (3.15),

(3.20) GxG*' = w{G;G'' + 2(n — 2)G;P¥ + (n — 2)'P,P"'}
(3.21)  Z¥,Z*Win = wZ, ., Zkih - 8G P+ 4(n — 2)P, P}

)
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WfﬁnW*kjm — ud{ij‘kajih + 8(a + (n — Z)b)szini
+ 4(n — 2)(a + (n — 2)bYP P},

(3.22)
respectively. For the expression G,,P/* in (3.20), (3.21) and (3.22), from (3.16)
follows readily '

(3.23) G,P't = u™'G;Vut.

Proposition 3.1 ([17], [21]). Suppose that K* becomes a constant by a
conformal change of metric. If K is nonpositive, then so is K*.
Proof. From (3.12) we have

K*fu"dV — qudV — n(n = 1) fu“uiuidV,
M M M )

and consequently, if K < 0, then K* < 0.

Proposition 3.2. Equation K* = u’K never holds unless u = const.
Proof. If K* = K holds, then we have, from (3.12),

2udu — nuut = 0,

which implies

fu“‘uiw'dV =0,

M

and consequently u; = 0, and u = const.

3.2. Integral formulas for a conformal change of metric

From (3.20) and (3.23) we can easily obtain
f W GKG*#* — uG,,.G)dV
M
—(n— 2)2[— f 1y kav + f uP_,in"dV]
M n M
by virtue of (1.6). Thus
(WG G*' — uG;,G)dV

G2y n — 2)2[% 4{' (dwKdV + J; uP ;P '”‘W] '

Similarly, using (3.21) and (3.22) we can prove, respectively,
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(WU°ZE ZX I — uZy ;) ZE YAV

(3.25) " — 4(n — 2)[_'1; { (4wKdV + (n — 2) !: tuiPﬁdV] ,

(u—KW* W*k]th — uij hWsz,h)dV

(3.26)
— 4n — la + (n — 2)b}2[% f (wKdV + f uP,,PﬁdV] .
M M

From (3.20) we can easily obtain

UGG — GGV = f U — u)G ,G1dV
3.27 o L "
+ - 2)2[_ f kv + uPﬁP”dV] ,
n
M N

by virtue of

f G, FudV = ’L‘l f (dwKav .
M

Similarly, using (3.21) and (3.22), we obtain, respectively,

[u@tazron — 2, 0zvmay
M

(3.28) = f(u — U Z, 1 ZRdY
M

+ 4(n — 2)[_1_f(du)KdV + fuPﬁPf“'dV] .
n
M M

f *S(W* W*k]lh ijthkjih)dV
M
(329 = f (U — w W, Wy

: 4n — 2)fa + (n — 2)b}2[% J; (4wKav + i tu,;P-”dV] .

Proposition 3.3. If K* = K and ¥ ,,K = 0, where %, denotes the Lie
derivative with respect to u, then, for an arbitrary integer p,
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f WG ututdV + f u? P, PHidV
M

=—-(n+p— 2)[fu1’"2(Vjui)ufuidV
(3.30) ¥
+ 2n(n -1

+ % f u”‘S(uiu’)dVJ .
M

f @' — ur-KuuidV

In particular, if p = 2 — n, then

(3.31) fu‘"“G“ufuidV + fu‘"”pjinidV =0.
M p. 4

Proof. From (3.18), by integration, directly computing V ,(u?~'u//u?) and
V., (u'utdu), and using (1.20)’, which is true for any scalar function p, we
easily obtain

f u P PHAY = —(p — 1) f w7 u)ulu'dV
M M

_ f WK iy — 11 f wp~ il Judy
x n M

+ ﬁ_:_l_fup"zuiuidudV .
n
M

Substituting

1 - 1
=———(u'— wK + —nutuut,
= 1)( DK + 2 U
obtained from (3.12), in the above equation and using (1.1) an elementary
computation leads readily to the required formula (3.30).
Proposition 3.4. If K* = K and ¥ ,,K = 0, then

3.32) fu MG AV + ——— | uT Q08 AV = 0,
M M

Proof. From (3.19) and (3.31), we obtain (3.32).
Proposition 3.5. If &£, K = 0and G5G*¥* = G,;,G', then, for an arbitrary
integer p,
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WP — w=9G ,,GIdV

(3.33) *
— 2(n — 2)pfu1’“‘GﬂufuidV +(n— 2)2fu1’“P,,PﬂdV = 0.
M

¢

In particular, if p = 2 — n, then

(u-—n+3 —un- l)GﬂG!idV

(3.34) ¥
+2(n — 20 f WG utudV 4+ (n — 27 f WP PRIV = 0 |

M M

Proof. From (3.20) and (3.23), by integration, directly computing
V(u?G ;,u') and using

n—2
2n

WIG,yui = " .;i.iuiViK ="P=22,Kk=0,

we can easily obtain the required formula (3.33).
Proposition 3.6. If £ ,,K = 0 and Z},,Z**Ith = Z, ., Z% % then, for an
arbitrary integer p,

.(up+l _ up-»a)zkjihzkjin,d[/

(3.35) *
—8p f WG wutdV + 4(n — 2) f uPHP,PIdY = 0.
M M

In particular, if p = 2 — n, then

f(u_n+3 _ u-/z»_1)zkjih2kjihd]/ + 8('1 _ 2)fu‘"“GﬁuJu‘dV
o

(3.36) ¥
+ 4(n — 2) f w P, PRV = 0.
M

Proof. (3.35) follows immediately from (3.21) and (3.23) in the same way
as in the proof of Proposition 3.5.
Proposition 3.7. If ¥, K = 0, W}k, Witk = W,,;,,W*'** and
a+n—-—2b£0,

then, for an arbitrary integer p,
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f UP*t — UPYW iy WAV
M

(3.37) —8{a+ (n— 2)b}2pfu""G,-iufde
M
+ 4(n — Dfa + (n — 2B} f UPHP PIAY = 0 .
M

In particular, if p = 2 — n, then

f(u—n+3 _ u—n-l)Wkﬁhijith

M
(3.38) + 8(n — 2){a + (n — 2)b¥ f u "G uiuidy

M

+ 4(n — Dfa + (n — b)Y f P PIAY = 0.

M

Proof. (3.37) follows immediately from (3.22) and (3.23) in the same way
as in the proof of Proposition 3.5.

4. Lemmas

Lemma 4.1. Let F be a C* function on a compact Riemannian manifold
M such that

. deVgO,
M

and f be a C* function such that

c<f in the domain F<O0,
0<f<e in the domain F>0,

where c is a positive constant. Then

fdeV <0.
M
Proof.
fdeV: fdeV n fdeV
M F<0 F>p

gchdV+chdV=chdVgO.

F<o F20 M
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Lemma 4.2. If f (dwKdV =0 or f £ KdV =0, and GXG*=G,,G*,

then, for an arbztrary non-positive p,

4.1) f(uw — uP GGV < 0.
M

In particular, if p = 2 — n, then

(4.2) f(u"”’ — wYG,GHdV <0 .
M

Proof. Now (3.27) implies

f (4 — u™)G,G*dV < 0.
M

Thus, if we put F = (u — u™)G,;,G', f = u?, then the assumptions in Lemma
4.1 are satisfied, and consequently we have (4.1).
Similarly, we can prove

Lemma 4.3. If f (dwKdV = 0 or f LaKdV = 0, and Z¥,Z*esn —
M M

“.3) f = U Z 0 249V < 0 |
M

Lemma 4.4. If f(Au)KdV = 0 or f.z’duKdV =0, and W} R WHEIR —
W, Wit a + (n — 2)b + 0, then

(4.4) f W — YW W WAV < 0.

M

Lemma 4.5. If K* = K, %,,K = 0, then

f WG uwdv <0,

M

equality holding if and only if

(4.5) P ou; — %Augﬁ =0.
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Proof. The lemma follows immediately from (3.31) and (3.16).
Lemma 4.6. If K* =K, ¥%,;,K =0, and

4.6) f u G iwdV > 0,

M

then (4.5) holds.

Proof. Lemma 4.5 and the assumptions give the proof.

Lemma 4.7. If K* = K, ¥,,K = 0, and G¥LG*/' = G;,G%, then (4.5)
holds.

Proof. (3.31),(3.34) and (4.2) imply (4.6), and hence (4.5) holds by
Lemma 4.6. ' .

Lemma 4.8. If K* = K, %,,K = 0 and Z},, 2% = Z,,,,Z**, then
(4.5) holds.

Proof. (3.31),(3.36) and (4.3) imply (4.6), and hence (4.5) holds by
Lemma 4.6.

Lemma 4.9. If K* = K, ¥,,K = 0, W§,,,W¥tiih = W, W, and

a+ (n—2)b+0,

then (4.5) holds

Proof. (3.31),(3.38) and (4.4) imply (4.6), and hence (4.5) holds by
Lemma 4.6.

Lemma 4.10. If ¥,,K=0, and (4.5) holds for a non-constant function u,
then M is isometric to a sphere.

Proof. From (4.5), by an argument in the proof of Theorem E, it follows
that the function u has exactly two critical points, P, and P_, where u takes
on the maximum and the minimum respectively. Then for each trajectory y(z)
of the gradient of u we have LLil}go r(®) = P, and tgg () = P_.

Since #,,K = 0, K is constant on each trajectory and hence on the whole
M by continuity of K at P, and P_. Then K must be positive [17]. Since M
has positive constant scalar curvature, (4.5) implies V u, + kug;; =0, k =
K/n(n — 1), [14],[27], and then, by Theorem D, M is isometric to a sphere.

5. Theorems on conformal changes of metric
Theorem 5.1. If M of dimension n > 2 admits a conformal change of
metric such that

[wikay =0, Gr6%" = w6, 6%,
M

then. M is conformal to a sphere.
Proof. (3.24) implies P;; = 0 so that (4.5) holds by (3.16). Hence by
Theorem E ([12], [20]) M is conformal to a sphere.
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Theorem 5.2. If M of dimension n > 2 with K = const. admits a conformal
change of metric such that G}G*/* = u'G ;,G?*, then M is isometric to a sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.1.

Theorem 5.3. If M of dimension n > 2 admits a conformal change of
metric such that

f (UWKAV =0,  ZE,Z*n = wZ, ,Z¢n
M

then M is conformal to a sphere.

Proof. The proof is the same as that of Theorem 5.1 except that (3.24)
should be replaced by (3.25).

Theorem 5.4. If M of dimension n > 2 with K = const. admits a conformal
change of metric such that Z}¥; ,Z***h = WZ, ,,, Z¥ /it then M is isometric to a
sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.3.

Theorem 5.5. If M of dimension n > 2 admits a conformal change of
metric such that

f(du)KdV =0,  WELWR = W, W
M
a+mn—-2)b+0,

then M is conformal to a sphere.

Proof. From (3.26) and the assumption of the theorem we have P,, = 0,
and consequently M is conformal to a sphere.

Theorem 5.6. If M of dimension n > 2 with K = const. admits a con-
formal change of metric such that Wk ,W** = u'W, ., W*** a + (n — 2)b
+ 0, then M is isometric to a sphere.

Proof. This is a consequence of Lemma 4.10 and Theorem 5.5.

Theorem 5.7. If a compact M of dimension n > 2 admits a conformal
change of metric such that K* = K, % ,,K = 0, and (4.6) holds, then M is
isometric to a sphere.

Proof. (3.31) implies P;; = 0, and consequently, by Lemma 4.10, M is
isometric to a sphere.

Theorem 5.8. If a compact M of dimension n > 2 admits a conformal
change of metric such that K* = K, %, K = 0, G¥G*/* = G,;,G'*, then M is
isometric to a sphere.

Proof. By Lemma 4.7 and the assumption, we have P,; = 0 and conse-
quently by Lemma 4.10, M is isometric to a sphere.

Theorem 5.9. If a compact M of dimension n > 2 admits a conformal
change of metric such that

K*=K, £,K=0, Z5,Z¥n=Z,,,ZH",
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then M is isometric to a sphere.

Proof. By Lemma 4.8 and the assumptions, we have P,; = 0 and conse-
quently by Lemma 4.10, M is isometric to a sphere.

Theorem 5.10. If a compact M of dimension n > 2 admits a conformal
changes of metric such that

K*=K, Z,K=0, W:ij*k”” = ijth.ijih' ’
a+(n—-2b+0,

then M is isometric to a sphere.
Proof. By Lemma 4.9 and the assumptions, we have P;; = 0 and conse-
quently, by Lemma 4.10, M is isometric to a sphere.
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